ME 430 REFRIGERATION AND AIR CONDITIONING

Credit: 3(3-0-6) Prerequisite: ME 331 Heat transfer

Semester 1 Year 2014

Instructor:	Chainarong Chaktranond	Section: 750001
	Room 413, Tel.(ext.) 3144,	
	E-mail address: cchainar@engr.tu.ac.th	
Lecture time:	Wed: 13.00 – 16.00 (Room Eng 712)	
Consulting hours:	Thru 13.30 – 16.30 or make an appointme	ent via email

Objectives: Students are expected to

- Understand basics of refrigeration and air condition systems and their operations
- Able to compute the cooling load
- Able to design and to select refrigeration and air conditioning equipments

Course Description:

Reviews of thermodynamics principles. Principles of refrigeration and various refrigeration systems. Single stage and two stages mechanical vapor compression refrigeration cycles. Main components such as compressor, condenser, evaporator, refrigerant flow control equipment. Auxiliary equipment. Absorption refrigeration. Refrigerants. Psychrometrics. Air conditioning system design. Introduction to current refrigeration and air conditioning technology. Cooling load calculation for refrigeration and air conditioning systems. Freezing of foods. Duct design. Principles of air distribution and diffuser selection.

Session	Topics	
1	1. Introduction to refrigeration and air conditioning systems.	
	Overviews and importance of refrigeration and air conditioning system for Mechanical	
	engineer.	
2	2. Reviews of thermodynamics and heat transfer	
	1 st and 2 nd laws of thermodynamics; open – close systems; control volume; heat transfer	
	coefficient and thermal resistance in various shapes	
3 – 4	3. Vapor compression cycle	
	Theoretical and actual vapor compression cycle; Refrigeration Carnot cycle;	
	Refrigeration effect and capacity; Coefficient of performance; Limited temperature;	
	Single and two stage vapor compression refrigeration cycles	
5	4. Psychrometry	
	Psychrometric chart; Definitions and calculations of humidity ratio and relative	
	humidity; Air and water vapor properties (Calculation & Table)	
6 – 7	5. Wetted – surface heat transfer	
	Wet surface phenomena; heat and mass transfer on wet surface of cooling coil	
8 – 10	6. Cooling and Dehumidifying coils	
	Calculation of actual cool coil; Dehumidify	
11 - 12	7. Main equipments in Refrigeration system	
	Functions and types of main equipments - Evaporator, compressor, condenser, pressure	
	reducing valve, thermostat, sight glass, drier – filter and safety equipments.	
13 – 14	8. Refrigerant	

Teaching Schedule:

Types, properties and applications of refrigerants: Selecting refrigerants, Absorption		
refrigeration		
9 Cooling load calculation for refrigeration system		
Types of heat gain, cooling load and calculations; Selecting capacity of refrigeration		
equipment, freezing of food.		
Topics		
10. Air conditioning system		
Objectives of air conditioning; Requirements in air conditioning design; Categories of		
air conditioning systems. Selecting suitable air conditioning system. Thermal comfort		
11 Cooling load coloulation for air conditioning system		
11. Cooling load calculation for air conditioning system		
Types of heat gain, cooling load and calculations; Selecting capacity of air conditioning		
equipment		
12. Air duct design		
Bernoulli equation; Energy equation; Equivalent round duct diameter; Friction loss;		
minor losses; Air duct design - equal friction and static regain methods.		
13. Supply air distribution		
Principles of air movement in air conditioning room; Types and functions of air		
diffusers; Selecting diffusers.		

Material courses:

- ระบบทำความเย็นและปรับอากาศ, ไชยณรงค์ จักรธรานนท์, สำนักพิมพ์มหาวิทยาลัยธรรมศาสตร์ (02-564-2589-60)
- Handout given by instructor (<u>http://www.chainarong.me.engr.tu.ac.th</u>)

Reference Books:

- Stoecker, W.F., 1982. Refrigeration and Air Conditioning 2nd ed., McGraw-Hill. (For topic 2 – 6)
- 2. Dossat, R.J., 1991. Principles of Refrigeration. 4th ed., Prentice-Hall. (For topic 7 9)
- 3. Edward G. Pita, 1998. Air conditioning principles and system, 3^{rd} ed., Prentice-Hall. (For topic 10-11)
- 4. Handbook of air conditioning system design, Carrier air conditioning company, McGraw-Hill. (For topic 12 13)
- 5. ASHRAE handbooks

Grade policy:

Attendance, Quiz and Assignment	20%
Mid-term Examination (topic $1-6$)	20%
2^{nd} Examination (topic 7 – 9)	30%
Final Examination (topic 10 – 13)	30%
Total	100%

Evaluation

≥ 80	Α
74 - 79	B+
68 – 73	В
62 - 67	C+
56 - 61	С
50 - 55	D +
44 – 49	D
< 44	F